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ABSTRACT

We determine a method to find explicit defining equations for each com-

pact Riemann surface which admits a cyclic group of automorphisms Cp

of prime order p such that the quotient space has genus 0.

1. Introduction

An open problem in the theory of compact Riemann surfaces is to find a defining

equation for such a surface X given a uniformizing subgroup Λ ≤ PSL(2,R) for

X . In general, when the genus g satisfies g ≥ 2, it is not at all clear how one could

approach this problem. However, under the assumption that the surface admits

automorphisms, we can use Galois theory to help us find defining equations;

see, for example, [10] and [4]. We shall consider this problem for each compact

Riemann surface X which admits an automorphism group Cp of prime order p

such that the quotient space X/Cp has genus 0. This is a generalization of the

case where X is a hyperelliptic Riemann surface — a surface which admits a

cyclic 2 cover of the Riemann sphere. We briefly describe how the equations for

a hyperelliptic surface will be found.

If X is a hyperelliptic surface, then X admits a cyclic 2 group of automor-

phisms C2 such that X/C2 has genus 0 which is normal in G, the full automor-

phism group of X . Since the quotient group G/C2 acts on the quotient space

X/C2, if we identify X/C2 with the Riemann sphere, then G/C2 is identified

with a finite group of automorphisms of the Riemann sphere. This group will

Received May 21, 2005 and in revised form July 15, 2005

103



104 A. WOOTTON Isr. J. Math.

act on the branch points of the quotient map πC2
: X → X/C2 (in general, if S

is a space on which a group G acts, we let πG: S → S/G denote the quotient

map). Kummer theory implies there exists an affine model of the form y2 = q(x)

for some polynomial q(x) and in fact q can be chosen so that the branch points

of the quotient map πC2
: X → X/C2 are the zeros of the polynomial q. These

facts impose enough restrictions on the equation to obtain a defining model for

X depending on G.

The obvious generalization is to find defining equations for compact Riemann

surfaces which admit a cyclic prime p cover of the Riemann sphere. Two imme-

diate problems arise for p ≥ 3. Similar to the hyperelliptic case, there is a model

of the form yp = q(x). However, for a hyperelliptic surface, the multiplicities of

the linear factors of the polynomial q(x) can only be 1. For p ≥ 3, the multi-

plicities can be any n for 1 ≤ n ≤ p−1. This means the method we develop will

have to determine not only the zeros of the polynomial, but also the multiplici-

ties of the linear factors. The second problem is that for p ≥ 3, the cyclic prime

subgroup Cp is not necessarily normal in the full group of automorphisms of X .

If we assume Cp is normal in G, the full automorphism group of X , in order

to put further restrictions on q(x), we can consider the action of G/Cp on the

quotient space X/Cp as we did with the hyperelliptic case. More generally,

however, we will start with a model of the form yp = q(x) and, if N ≤ G with

Cp normal in N , consider the action of N/Cp on the quotient space X/Cp. As

we shall see in Section 8, the method produced can be used to derive some

very classical models. Before we move on, the following definitions will be very

useful.

Definition 1.1: Suppose X is a compact Riemann surface admitting a cyclic

prime group of automorphisms Cp of order p with the property that X/Cp has

genus 0. Then we call X a cyclic p-gonal surface and Cp a p-gonal group for X .

The outline of our work is as follows. We start in Section 2 by gathering the

necessary results from uniformization. Following this, as our reasoning suggests,

one key part of the problem is to classify each group N with the following

properties for each prime p.

(i) N has a normal cyclic subgroup Cp of prime order p.

(ii) N/Cp is isomorphic to a finite group of automorphisms of the Riemann

sphere.

We shall temporarily refer to such a group as a p-gonal normal overgroup of

Cp, though we shall refine this definition in Section 3. For the hyperelliptic case,
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a classification of these groups can be found in [1]. For the general case (in fact

for general n), all such groups were classified in [7]. Since it will be relevant to

our construction and for completeness, we summarize the techniques which can

be used to determine these groups in Section 3 giving full presentations for all

such groups in Appendix B. Next, in Section 4, we shall describe the structure

of the corresponding quotient maps and the discrete groups associated to them.

Once all groups have been described, we shall approach the problem of finding

defining equations for cyclic p-gonal surfaces (for some related results using func-

tion fields and Teichmüller theory, see [7] and [5] respectively). Since our goal is

to use uniformization to provide explicit equations for all cyclic p-gonal surfaces,

we outline in Section 5 the known results which explain how uniformization and

Galois theory can be used to find a general form for a defining equation for X .

Following this, in Section 6, we shall determine the zeros of the polynomial q(x).

This knowledge will be sufficient to present complete results for the case where

X is hyperelliptic. Next, in Section 7, we shall determine the multiplicities of

the linear factors of q(x). The main result we obtain is Theorem 7.5 and is an

extension to those found in [11] and [4]. Finally, to illustrate the use of these

results, we present explicit examples in Section 8.

2. Uniformization and Fuchsian groups

A compact Riemann surface X of genus g ≥ 2 can be realized as a quotient

of the upper half plane H /Λ, where Λ is a torsion free Fuchsian group called

a surface group for X . Under such a realization, a group G acts as a group

of automorphisms on X if and only if G = Γ/Λ for some Fuchsian group Γ

containing Λ as a normal subgroup of index |G|. We call Γ the Fuchsian group

corresponding to G and, if Λ has been fixed, G the automorphism group corre-

sponding to Γ. If G is group of automorphisms of X with surface group Λ and Γ

is the Fuchsian group corresponding to G, we identify the orbit spaces H /Γ and

X/G and the quotient map πG: X → X/G is branched over the same points as

πΓ: H → H /Γ with the same ramification indices as illustrated in Figure 1.

We define the signature of a Fuchsian group Γ to be the tuple

(g; m1, m2, . . . , mr), where the quotient space H /Γ has genus g and the quo-

tient map πΓ branches over r points with ramification indices mi for 1 ≤ i ≤ r.

The signature of Γ also provides information regarding a presentation for Γ and

the local behavior of the elements with fixed points (see [2], Theorem 3.21 for a

detailed exposition of condition (v)).



106 A. WOOTTON Isr. J. Math.

H πΓ

**

πΛ

// H /Λ = X
πG

// H /Γ = X/G

Figure 1. Holomorphic quotient maps and surface identifications.

Theorem 2.1: If Γ is a Fuchsian group with signature (g; m1, . . . , mr), then

there exist group elements a1, b1, . . . , ag, bg, c1, . . . cr ∈ PSL(2,R) such that:

(i) Γ = 〈a1, b1, . . . , ag, bg, c1, . . . cr〉.
(ii) Defining relations for Γ are

cm1

1 , cm2

2 , . . . , cmr
r ,

g
∏

i=1

[ai, bi]

r∏

j=1

cj .

(iii) Each elliptic element (the elements of finite order) lies in a unique con-

jugate of 〈ci〉 for suitable i. Furthermore, the cyclic groups 〈ci〉 are self-

normalizing in Γ.

(iv) Each elliptic element of Γ has a unique fixed point in H . All other elements

(the hyperbolic elements) act fixed point freely on H .

(v) For 1 ≤ i ≤ r, the elliptic generators c1, . . . , cr of Γ of orders m1, . . . , mr

respectively can be chosen so that ci is described by z → e−2πi/miz near

its fixed point. We call e2πi/mi the rotational constant of ci.

We call a set of elements of Γ satisfying Theorem 2.1 canonical generators

for Γ. Notice that if Γ is a surface group for a surface of genus g, since it is

torsion free, it must have signature (g;−).

Given a Fuchsian group Γ with signature (g; m1, . . . mr), to find the normal

subgroups of finite index, we consider the possible epimorphisms from Γ onto

different finite groups. Given such an epimorphism ̺: Γ → G, by knowing ex-

plicitly the images of the elliptic generators of Γ, we can determine the signature

of the normal subgroup Ker(̺). In the special case where Ker(̺) is torsion free,

we call ̺ a surface kernel epimorphism. The general method is outlined in

the following result.

Proposition 2.2: Let Γ be a Fuchsian group with signature (gΓ; m1, . . . , mr)

and Λ ≤ Γ a normal subgroup of finite index N such that ciΛ has order ti in

the quotient group Γ/Λ. Then the orbit genus gΛ of Λ is given by

gΛ − 1 = N(gΓ − 1) +
N

2

r∑

i=1

(

1 − 1

ti

)

,
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and the periods of Λ are fi,j = mi/ti, 1 ≤ j ≤ N/ti, 1 ≤ i ≤ r, where fi,j = 1

are deleted.

Proof: This is a special case of Theorem 1, [9].

3. Necessary finite group theory

For this section, we assume that p is an odd prime. For similar results on

the hyperelliptic case, we refer the interested reader to [1] and for a detailed

examination of the case for general n, to [7].

By definition, a p-gonal normal overgroup G of a p-gonal surface X will con-

tain a cyclic p subgroup Cp which is normal and such that the quotient space

X/Cp has genus 0. Since the group K = G/Cp acts on the quotient space X/Cp,

it follows that K is a finite group of automorphisms of the Riemann sphere. All

such groups are well known and we tabulate them in Table 1. The branch-

ing data is a vector whose length is the number of branch points of the map

πK : Σ → Σ/K and whose entries are the orders of the branch points. It follows

that any p-gonal normal overgroup must satisfy the short exact sequence:

1 → Cp → G → K → 1

Figure 2. Short exact sequence for normal p-gonal overgroups.

Here, K is a finite group of automorphisms of the Riemann sphere.

Group BranchingData

Cn (n, n)
Dn (2, 2, n)
A4 (2, 3, 3)
S4 (2, 3, 4)
A5 (2, 3, 5)

Table 1. Groups of automorphisms of the Riemann sphere and branching data.

To find the solutions to this short exact sequence, we can consider the map

A: K → Aut(Cp) = Cp−1 determined by the action of K on Cp. We shall call

this the action map of G. If K is one of the three groups of automorphisms

of the platonic solids, there are few choices for the kernel of A. Moreover, if

p > 5 for A5 or p > 3 for A4 and S4, since (p, |K|) = 1, it is a consequence of
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the Schur–Zassenhaus Theorem that G is a semi-direct product of K and Cp.

This determines all possibilities for G under these conditions. The remaining

solutions, when p = 2, 3 or 5, can be found by looking through the library of

small groups in the GAP database, [7].

When K is a cyclic group, then either G is a split extension of Cp by K or

G is cyclic. When K is dihedral of order 2n, there are up to four solutions if

|K| is divisible by 4 and up to three solutions else (depending upon whether p

and n are coprime). We tabulate all groups with full presentations in Table 5

in Appendix B. We also include the kernel of the action map A.

Our summary suggests that given a cyclic p-gonal surface X , there are a

number of different possible p-gonal normal overgroups which can act on X .

We shall explore the different possibilities for these groups and state condi-

tions under which we can make a well-defined unique choice for G (so we can

henceforth refer to G as the p-gonal normal overgroup of X).

First, for a fixed p-gonal group Cp, if NAut(X)(Cp) denotes the normalizer of

Cp in Aut(X), then any group H with Cp ≤ H ≤ NAut(X)(Cp) will also be

a p-gonal normal overgroup for X . To avoid this redundancy, given a surface

X and a fixed p-gonal group Cp, when building equations for X , we shall just

consider the group NAut(X)(Cp). The second problem which could occur is that

different p-gonal subgroups could have different normalizers, and consequently

could be contained in different p-gonal normal overgroups up to isomorphism.

However, the following result guarantees that this will never happen.

Proposition 3.1: If Aut(X) is the full automorphism group of X , then there

exists a unique conjugacy class of p-gonal groups.

Proof: This is the main result of [5].

With these results in consideration, we redefine the term p-gonal normal over-

group and fix some further notation and terminology.

Definition 3.2: If X is a p-gonal, we define the p-gonal normal overgroup of X

to be the group G = NAut(X)(Cp) considered as an abstract group where Cp is

some p-gonal group of X . If Cp is a p-gonal group of X and G = NAut(X)(Cp)

considered as a subgroup of Aut(X), we define G to be the p-gonal normal

overgroup of Cp. We define the group K = G/Cp to be the sphere group of

X .

Henceforth, we shall assume that given a p-gonal surface X , Cp denotes some

fixed p-gonal group for X and G is its p-gonal normal overgroup in Aut(X). We
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shall let Λ denote some fixed surface group for X and Γp and Γ denote Fuchsian

groups with Γ/Λ = G and Γp/Λ = Cp. Finally, we let ̺: Γ → G and χ: Γ → K

denote fixed epimorphisms with kernels Λ and Γp respectively. We shall explore

the implications of these choices and how they effect the equations in Section 5.

4. Group signatures and ramification points

For a p-gonal surface X , since the map πCp
: X → X/Cp is a Galois cover of the

Riemann sphere of degree p, at any point it will either be totally ramified of order

p, or unramified. It follows that Γp with Γp/Λ = Cp has signature (0; p, . . . , p
︸ ︷︷ ︸

R times

)

for some integer R > 2. In the previous section we found all possible p-gonal

normal overgroups. Given such a G, we shall now determine the signature for

Γ. First note that after appropriate group and surface identifications, we get

the tower of covers illustrated in Figure 3. To find the possible signatures for Γ,

we use the fact that we know complete branching data of the maps πK and πCp
.

It is then a simple matter of determining whether or not any branch points of

πCp
coincide with any ramification points of πK . We summarize below.

H
πΓ

  

πΓp

((

πΛ

// H /Λ

πG

99πCp

// H /Γp πK

// H /Γ

Figure 3. Holomorphic quotient maps and surface identifications.

Proposition 4.1: The possible signatures for Γ depend upon the sphere group

K and are calculated as follows.

(i) If K 6= Cn and (m1, m2, m3) is the branching data of the quotient map πK ,

the signature of Γ is (0; am1, bm2, cm3, p, . . . , p
︸ ︷︷ ︸

stimes

) where a, b and c are either

1 or p depending upon whether any branch points of πCp
coincide with

ramification points of πK . For such a Γ, the signature of Γp is (0; p . . . , p
︸ ︷︷ ︸

r times

)
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where

r = s|K| + (a − 1)|K|
(p − 1)m1

+
(b − 1)|K|
(p − 1)m2

+
(c − 1)|K|
(p − 1)m3

.

(ii) If K = Cn, the signature of Γ is (0; an, bn, p, . . . , p
︸ ︷︷ ︸

s times

) where a and b are either

1 or p depending upon whether any branch points of πCp
coincide with

ramification points of πK . For such a Γ, the signature of Γp is (0; p, . . . , p
︸ ︷︷ ︸

r times

)

where

r = sn +
(a − 1)|K|
(p − 1)n

+
(b − 1)|K|
(p − 1)n

.

Proof: In order to determine the signature of Γ, we need to determine the

branching data of the map πΓ. Let R denote the branch points of πΓ. Since

πΓ = πK ◦ πCp
◦ πΛ, and πΛ is unramified, any point α ∈ R has the property

that either α is branch point of πK or is the image of a branch point of πCp

under πK (or both). If α is branch point of πK of order m but not the image

of a branch point of πCp
under πK , the branching order of πΓ at α is m. If α

is the image of a branch point of πCp
under πK but not a branch point of πK ,

then the branching order of α is p (since πCp
is either totally ramified of order

p or unramified). Finally, if α is both a branch point of πK of order m and

the image of a branch point of πCp
, then it has branching order mp. Hence the

possible signatures for Γ are those stated.

To find the signature of Γp, we determine the orbits of branch points of πCp

under K. Alternatively, we could apply Proposition 2.2.

5. Previous results and a general form

In this section, we summarize the known results and develop a general form for

defining equations for p-gonal surfaces. Let x: X → Σ denote the Galois cover

of the sphere by the p-gonal group Cp. Let M(X) denote the function field of

X and C (x) the function field generated by x and the constant functions on

X . Classical theory tells us that if Φ(x, y) is an irreducible polynomial in C (x)

whose splitting field is M(X), then X is conformally equivalent to the Riemann

surface of Φ(x, y) (see, for example, section 10.9 of [10]). We call Φ(x, y) a

defining equation for X . By Kummer theory, there exists y ∈ M(X) and

q(x) ∈ C (x) such that the splitting field of yp = q(x) is M(X). In fact, by

appropriate choices of x and y, we can guarantee that q(x) is a polynomial, the

linear factors each of which have multiplicity bounded between 1 and p − 1.
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Moreover, by construction, the branch points of the map x will be precisely the

zeros of the polynomial q(x) (and possibly ∞).

To find the exponents of the linear factors of q(x) we can use the fact that a

group of analytic automorphisms of X also acts as a Galois group on the function

field of X . The first result we consider gives us a way to relate the exponents

of the linear factors of the polynomial q(x) to the quotient map ̺Γp
: Γp → Cp

(the restriction of ̺: Γ → G). Since the problem reduces to a close examination

of the action of a generator of Cp on its fixed points, we introduce the following

definition.

Definition 5.1: Suppose that a is a branch point of the map πCp
. Then a is

the image of the fixed point α of some canonical generator c of Γp. We call a

the branch point of πCp
corresponding to c.

Theorem 5.2: Let c1, . . . , cr denote a set of canonical generators of Γp. Fix a

generator b of Cp such that, as an element of the Galois group Gal(C (x, y)/C (x)),

b · y = ζy where ζ = e2πi/p (we call such an element a canonical generator

for Cp). Let a1, . . . , ar ∈ Σ denote the branch points of x corresponding to

the canonical generators c1, . . . , cr respectively (where ai could be ∞ for some

i). If ̺Γp
: Γp → Cp is the quotient map onto the p-gonal group Cp of X and,

for 1 ≤ j ≤ r, nj is the power of b to which cj is mapped under ̺Γp
(so

̺Γp
(cj) = bnj ), then a defining equation for X is

yp = Πr
j=1(x − aj)

nj

or

yp = Πi−1
j=1(x − aj)

nj Πr
j=i+1(x − aj)

nj

if ai = ∞.

Proof: This was first noted in [6]. For a more detailed exposition, see Section

1 of [4].

Of course, the construction of these equations depends upon a number of

different choices, and these choices will produce different equations. We next

present a result which gives complete conditions for determining when two equa-

tions constructed using Theorem 5.2 are defining equations for the same p-gonal

surface up to conformal equivalence. First we need the following definition.

Definition 5.3: If q(x) is a polynomial, for M ∈ PSL(2, C ), we define qM (x) to

be the polynomial obtained by applying M to the zeros of q(x).
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Theorem 5.4: Suppose that yp = q(x) and yp = r(x) are defining equations

for cyclic p-gonal surfaces X1 and X2 constructed using Theorem 5.2. Then

X1 is conformally equivalent to X2 if and only if r(x) = (qM (x))k for some

M ∈ PSL(2, C ) and integer k coprime to p.

Proof: See [4], Lemma 5.2.

6. Deriving the branch points

If X is a cyclic p-gonal surface, then Theorem 5.2 implies that X has a defining

equation of the form yp = Πr
i=1(x − ai)

ni = q(x) where the ai are the branch

points of the quotient map πCp
: X → X/Cp

∼= Σ for some choice of integers

with 1 ≤ ni ≤ p − 1. In general, provided Σr
i=1ni ≡ 0 mod(p), ai 6= aj for

i 6= j, any such choice of ai’s and ni’s will be a defining equation for a cyclic

p-gonal surface. However, we are interested in cyclic p-gonal surfaces which

admit additional automorphisms as this will allow us to specify the equations

further. Therefore, we shall examine the restrictions imposed by the p-gonal

normal overgroup on the ai.

Recall that X/Cp has genus 0 so it can be identified with the Riemann sphere

Σ considered as the extended complex plane. Under this identification, the

branch points of πCp
will be identified with specific numbers in the extended

complex plane and the group K will be identified with a specific finite subgroup

of PSL(2, C ). Since the group K acts on the quotient space X/Cp, the branch

points of πCp
will fall into K orbits. Applying Theorem 5.2, it follows that the

zeros of q(x) will fall into K-orbits.

Henceforth, assume that X/Cp has been identified with Σ via a biholomorphic

equivalence and K has consequently been realized as a subgroup of PSL(2, C )

(the implication of such a choice has already been discussed in Theorem 5.4).

Let the set {a1, . . . , ar} ⊂ Σ be a set of K-orbit representatives of the

branch points of πCp
. It is clear that for any ai, the K-orbit will be the set

{k(ai)|k ∈ Sai
)} where Sai

denotes a set of coset representatives for StabK(ai)

in K. The following is an immediate consequence of our observations.

Proposition 6.1: Suppose X is a cyclic p-gonal surface, Cp a p-gonal group

for X and G is the p-gonal normal overgroup for Cp. If πCp
: X → Σ is the

quotient map, K = G/Cp and {a1, . . . , ar} are a set of K-orbit representatives

for the branch points of πCp
, then there exist integers ni,k, k ∈ Sai

and 1 ≤ i ≤ r

such that

yp = Πr
i=1Πk∈Sai

(x − k(ai))
ni,k
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is a defining equation for X .

In order to finish the problem of finding defining equations for a cyclic p-gonal

surface X , we need to examine the restrictions imposed by G on the multiplic-

ities of the linear factors of the polynomial q(x). When X is hyperelliptic, the

only possible exponent is 1. This means we now have sufficient information to

write down defining equations for all hyperelliptic surfaces. Specifically, with

the notation we have employed, a defining equation for a hyperelliptic surface

X will be

y2 = Πr
i=1(Πk∈Sai

(x − k(αi))

with the obvious minor adjustments if ∞ is a branch point of the quotient map

πC2
: X → X/C2.

These equations are very general, so to highlight the results we have devel-

oped, we shall examine specific examples. In these examples, we assume that

the action of K on Σ has been fixed as specified in Appendix A.

Example 6.2: Suppose that Γ is a Fuchsian group with signature (0; 2, 4, 2g+2)

for some integer g ≥ 2. We can define a surface kernel epimorphism ̺: Γ →
V2g+2 with presentation 〈x, y|x4, y(2g+2), (xy)2, (x−1y)2〉 with kernel a surface

group for a hyperelliptic surface X of genus g and sphere group D2g+2. Using

the results we have developed, a defining equation for such a surface will be

y2 = Π2g+2
i=1 (x − ζi) for some primitive (2g + 2)-th root of unity ζ.

Γ G K Ramification Equation y2 = q(x)

(0; 2, 2, 2, 2, 2, 2) C2 1 (0;−) Π6
i=1(x − αi)

(0; 2, 2, 2, 2, 2) V4 2 (0; 2, 2, p, p, p) (x2 − 1)(x2 − α2
1)(x

2 − α2
2)

(0; 2, 2, 2, 4) D4 V4 (0; 2, 2, 2p, p) x5 − (α2 + ( 1
α )2)x3 + x

(0; 2, 2, 2, 3) D6 S3 (0; 2, 2, 3, p) Π3
i=1(x − ζ2iα)(x − ζ2i

α )
(0; 2, 3, 8) GL(2, 3) S4 (0; 2, 3, 4p) x5 − x
(0; 2, 5, 10) C10 C5 (0; 5, 5p, p) x6 − x
(0; 2, 4, 6) V6 D6 (0; 2, 2p, 6) x6 − 1

Table 2. Equations for genus 2 surfaces.

Example 6.3: In genus 2 every surface is hyperelliptic. Breuer’s list for genus

2 (see [2], p. 77) gives us a complete list of signatures for Fuchsian groups

containing normal surface groups of orbit genus 2. Applying Theorems 5.1 and

5.2 in [3], we can refine this list so that each entry is a p-gonal normal overgroup

for some compact Riemann surface X of genus 2. Using the results we have

developed throughout this section, we can write down defining equations for
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these surfaces. We tabulate them in Table 2. In the equations, the ai’s are

pairwise distinct complex numbers. We use i to denote a primitive 4th root of

unity and ζ to denote a primitive 6th root of unity.

7. Finding the exponents of the linear factors

To complete the problem of finding defining equations, we need to find the

conditions imposed on the multiplicities of the linear factors of q(x) by the action

of the p-gonal normal overgroup G of X . For convenience, fix a1, . . . , ar, a set

of K-orbit representatives for the branch points of πCp
. For a set of canonical

generators c1, . . . , cR of Γp, let c1, . . . , cr denote a subset with corresponding

branch points a1, . . . , ar. In order to find the multiplicities for the linear factors

of q(x), we shall apply Theorem 5.2 to a special choice of canonical generators

for Γp related to c1, . . . , cr.

Theorem 7.1: Any set of canonical generators for Γp is of the form γi,jciγ
−1
i,j ,

1 ≤ i ≤ r, 1 ≤ j ≤ |K|/| StabK(ai)| where the γi,j have the property that the

χ(γi,j) run over the elements in Sai
(a set of coset representatives for StabK(ai)

in K).

Proof: Consider the first elliptic generator c1 of Γp. By Theorem 2.1, c1 lies

in a unique class (ck)Γ for some elliptic generator c of Γ. This class splits into

[Γ : Γp · CΓ(c1)] classes in Γp and representatives for these classes are γic1γ
−1
i ,

where the γi run over a set of coset representatives for Γp · CΓ(c1) in Γ (for

details, see Lemma 3.6 of [2]). Note that if α1 is the fixed point of c1 in H ,

then StabΓ(α1) = CΓ(ci) and, under χ, the image of StabΓ(α1) is StabK(a1).

It follows that the sets of coset representatives for Γp ·CΓ(c1) in Γ are precisely

the fibers χ−1(g) , where the g ∈ K run over coset representatives for StabK(ai)

in K. By applying the same argument to the other elliptic generators ci of Γp,

we get a set of generators for Γp of the form γi,jciγ
−1
i,j for c1, . . . , cr as defined

above and χ(γi,j), 1 ≤ j ≤ |K|/| StabK(ai)| running over coset representatives

for StabK(ai) in K. To finish, we need to show that any set of canonical

generators for Γp is of this form.

For any canonical generator c in a set of canonical generators, since it has fi-

nite order, it must be Γp-conjugate to a power of one of the generators γi,jciγ
−1
i,j

defined above. Since Γp C Γ, by rewriting in terms of different coset repre-

sentatives γi,j if necessary, we may assume that c = γi,jc
l
iγ

−1
i,j for some l. By

assumption, the local action of c near its fixed point is rotation through −2π/p.

Since every element of PSL(2,R) is conformal on H , it follows that the action
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of c near its fixed point will be the same as the action of cl
i near its fixed point.

Again, by assumption, the action of ci near its fixed point is rotation through

−2π/p and the action of cl
i will be rotation through −2lπ/p, so it follows that

l = 1.

This result motivates the following definition.

Definition 7.2: A subset c1, . . . , cr of canonical generators, with the property

that every other element in this set is of the form γi,jciγ
−1
i,j as described above,

will be called a Γ-set of canonical generators for Γp, or a Γ-set for short.

Henceforth, let b denote a canonical generator of Cp and fix c1, . . . , cr, a Γ-set

corresponding to a1, . . . , ar respectively. Let n1, . . . , nr with 1 ≤ ni ≤ p − 1

be the powers of b to which the generators c1, . . . , cr are mapped under ̺Γ

respectively. Also, for the Γ-set c1, . . . , cr, fix a set of canonical generators

γi,jciγ
−1
i,j for Γ as given in Theorem 7.1. To apply Theorem 5.2, for each k ∈ K,

we need to find the multiplicity of k(ai) in q(x). This can be done by applying

the following easy result.

Lemma 7.3: For k ∈ K, the canonical generator of Γp corresponding to k(ai)

is γi,jciγ
−1
i,j where χ(γi,j) = k.

Proof: We just need to find the image of the fixed point of γi,jciγ
−1
i,j in H under

the map πΓp
. The fixed point of γi,jciγ

−1
i,j in H will be γi,j(αi), where αi is the

fixed point of ci in H . Consequently, the branch point corresponding to γi,jciγ
−1
i,j

in Σ will be πΓp
(γi,j(αi)) = [γi,j(αi)]Γp

= χ(γi,j)[αi]Γp
= χ(γi,j)(ai) = k(ai).

Recall that A denotes the action map of K on the p-gonal group Cp. Since

Aut(Cp) is cyclic, there exists k ∈ K such that A(k) generates the image of A(K)

in Aut(Cp). Fix such a k and suppose that N is the integer with A(k)(b) = bN .

Then we get the following nice result.

Lemma 7.4: Suppose that ̺(ci) = bni for 1 ≤ i ≤ r. Then the image of the

elliptic generator γi,jciγ
−1
i,j under ̺Γp

is A(χ(γi,j))(b
ni). In particular, for k and

N as defined above, if χ(γi,j) ∈ kT Ker(A) then ̺(γi,jciγ
−1
i,j ) = bniN

T

.

Proof: This is a direct consequence of the results we have developed throughout

this section.

We now have all the necessary material to construct equations for cyclic p-

gonal surfaces. Note that the statement of Theorem 7.5 holds trivially for p = 2,



116 A. WOOTTON Isr. J. Math.

so we do not specify any conditions on p. Before we state the result, we recall the

different choices which have been made in order to find q(x) (the implications

of these choices have already been discussed in Theorem 5.4).

• X is cyclic p-gonal, Cp is some fixed p-gonal group for X , G is its p-gonal

normal overgroup and K is its sphere group.

• Λ is a surface kernel for X and Γ and Γp are the Fuchsian groups with

Γ/Λ = G and Γp/Λ = Cp.

• ̺: Γ → G and χ: Γ → K are fixed epimorphisms with kernels Λ and Γp

respectively.

• Φ: X/Cp → Σ is a biholomorphic identification and a1, . . . , ar are a set of

K-orbit representatives for the branch points of the map Φ ◦ πCp
.

• Sai
denotes a set of coset representatives for StabK(ai) in K.

• c1, . . . , cr are a Γ-set and

{γi,jciγ
−1
i,j |1 ≤ i ≤ r, 1 ≤ j ≤ |K|/|StabK(ai)|, χ(γi,j) ∈ S(ai)}

• b is a canonical generator for Cp.

• k ∈ K is an element whose powers are coset representatives for Ker(A) in

K.

• N is the number with 1 ≤ N ≤ p − 1 such that A(k)(b) = bN .

Our results imply the following.

Theorem 7.5: A defining equation for X is

yp = Πr
i=1(Π

n
j=1(Πg∈kj Ker(A)∩Sαi

(x − g(αi))
Njni).

Moreover, if yp = q(x) is any other defining equation for X satisfying Theorem

5.2, then there exists M ∈ PSL(2, C ) and D ∈ Z such that

q(x) = Πr
i=1(Π

n
j=1(Πg∈kj Ker(A)∩Sαi

(x − M(g(αi)))
DNjni)

(where the DN jni are taken modulo p).

8. Examples

To highlight the use of these results and the explicit equations which can be

obtained, we finish by looking at a small number examples, deriving classic

equations for some very well known surfaces. Unless otherwise stated, we choose

an identification of X/Cp with Σ as specified in Appendix A.
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Example 8.1: Suppose that Γ has signature (0; p, p, p), and ̺: Γ → Cp × Cp is

a surface kernel epimorphism with kernel Λ of genus (p− 1)(p− 2)/2. Then the

surface X = H /Λ is a genus (p − 1)(p − 2)/2 cyclic p-gonal surface. The group

Γp has signature (0; p . . . p
︸ ︷︷ ︸

p times

), the group Cp × Cp is a p-gonal normal overgroup

and the sphere group for X is K = Cp. After identification of X/Cp with Σ,

the map πCp
is branched over the p-th roots of unity ζi, 1 ≤ i ≤ p, where ζ is

a primitive pth root of unity. Since the action map of K = Cp on the p-gonal

group is trivial, the powers of a canonical generator b of Cp to which a set of

canonical generators of Γp are mapped will be the same. Therefore, without

loss of generality, we assume that ̺(c) = b for each canonical generator c of Γp.

Using our results, we get a defining equation for X of the form

yp = Πp
i=1(x − ζi) = xp − 1.

If we choose instead the function z = −x, this will be branched over −ζi and

we get a defining equation for X of the form

yp = Πp
i=1(ζ

i − z) = 1 − zp

or

zp + yp = 1,

which is a defining equation for the pth Fermat curve.

Example 8.2: Suppose that Γ has signature (0; 4, 4, 5) and ̺: Γ → C5 o C4 is

a surface kernel epimorphism where the action of C4 on the elements of C5 is

inversion (so the action map has kernel of order 2). If Λ denotes this surface

kernel, then X = H /Λ is a genus 4 cyclic 5-gonal surface and C5 o C4 is the 5-

gonal normal overgroup. The group Γ5 has signature (0; 5, 5, 5, 5) and if {c} ∈ Γ5

is a Γ-set for Γ5 and γ ∈ Γ has order 4, then {c, γcγ−1, γ2cγ−2, γ3cγ−3} is a set

of generators for Γ5. Note that these are not canonical generators, but are each

Γp-conjugate to different canonical generators in a set of canonical generators.

In particular, the images under ̺ of these elements will be the same as that of

a set of canonical generators.

After identification of X/Cp with Σ, the map πCp
is branched over the fourth

roots of unity. In fact, we can choose this identification so that the image of

γ in the sphere group is the Möbius transformation M(z) = iz. Without loss

of generality, assume that 1 corresponds to the canonical generator c and that

if b is a canonical generator for C5, then A(M)(b) = b4 and ̺(c) = b. Since c
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corresponds to 1, the exponent of (x − 1) in the defining equation for X will

be 1. Next, since M(1) = i and A(M)(b) = b4, it follows that the exponent of

(x−i) in the defining equation for X is 4. Likewise, we obtain 1 as the exponent

for the term (x − 1) and 4 as the exponent of the term (x + i). Therefore, we

get a defining equation for X of the form

y5 = (x2 − 1)(x2 + 1)4.

This surface is actually the Riemann surface of lowest genus on which the group

S5 acts and is called Bring’s curve.

Example 8.3: Suppose that Γ has signature (0; 3, 3, 7) and ̺: Γ → C7 o C3 is

a surface kernel epimorphism with kernel Λ. Then the surface H /Λ is a genus 3

cyclic 7-gonal surface with 7-gonal normal overgroup C7oC3 and sphere group

K = C3. The group Γ7 has signature (0; 7, 7, 7) and if {c} ∈ Γ7 is a Γ-set for

Γ7 and γ ∈ Γ has order 3, then {c, γcγ−1, γ2cγ−2} is a set of generators for

Γ7. Instead of identifying X/C7 with Σ as specified by Appendix A, we choose

the identification so that the image of γ in C3 is the Möbius transformation

M(z) = −1/(z − 1) and πCp
is branched over 0, 1 and ∞. Without loss of

generality, assume that 0 corresponds to the canonical generator c and that if

b is a canonical generator for C7, then A(M)(b) = b2 and ̺(c) = b. Since c

corresponds to 0, the exponent of (x − 0) in the defining equation for X will

be 1. Next, since M(0) = 1 and A(M)(b) = b2, it follows that the exponent of

(x− 1) in the defining equation for X is 2. Since the last branch point is ∞, we

get

y7 = x(x − 1)2

as a defining equation for X . Notice that this is an affine model for Klein’s

genus 3 surface.

Example 8.4: If we want to find unique defining equations for cyclic prime

covers of the Riemann sphere independent of the prime p, we need to classify

all surfaces which admit a cyclic p and a cyclic q cover of the Riemann sphere

for primes p 6= q. This classification, completed in [13], consists of two infinite

families and one additional genus 2 surface. Using the results we have developed,

we can find different defining equations depending upon the prime used. For

example, if X is p-gonal and q-gonal with full automorphism group Cp×Cq and

the normalizer of Λ has signature (0; pq, p, q), our results produce the following

two different equations for X :

yp = xq − 1
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and

yq = xp − 1.

Appendix A. Actions of K on Σ

Given a cyclic p-gonal surface X , a p-gonal group Cp of X , its normal p-gonal

overgroup G, and a surface kernel epimorphism ̺: Γ → G with kernel a surface

group for X , the method we have developed to construct defining equations

for X produces a PSL(2, C )-class of possible polynomials q(x), each of which is

unique up to a power of n coprime to p. The PSL(2, C )-class arises because a

defining equation depends upon a choice of identification of X/Cp with Σ. One

way to reduce the size of this list is to specify the action of K = G/Cp on Σ

and, in particular, specify the generators of K. The following result justifies

why we can do this.

Theorem A.1: Any finite group of conformal automorphisms of the Riemann

sphere Σ is isomorphic to Cn, Dn, A4, S4 or A5. Moreover, any two finite groups

of automorphisms of Σ of the same isomorphism type are conjugate in the full

group of automorphisms of Σ.

Proof: See [11] Section 1.2.

After identifying X/Cp with Σ via a biholomorphic map Φ, if we compose

this map with any Möbius transformation M , this too will yield a biholomor-

phic equivalence and the group MKM−1 as a subgroup of PSL(2, C ) will act

on M(Σ). By the above theorem, all isomorphism classes are conjugate in

PSL(2, C ). In particular, if we can find one representation for a finite group

of automorphisms K ′ of the Riemann sphere in PSL(2, C ), by means of a bi-

holomorphic map, we may identify X/Cp with Σ in such a way that K = K ′.

Specifically, we take M ∈ PSL(2, C ) where M is the Möbius transformation

with MKM−1 = K ′, which exists by the theorem above. The following corol-

lary gives a specific representation of each K in PSL(2, C ). Included is a list of

K orbits for points with non-trivial stabilizer for all groups except K = A5. We

exclude this case as the orbits are extremely large.

Corollary A.2: For a cyclic p-gonal surface, we may identify X/Cp with the

Riemann sphere (considered as the extended complex plane) in such a way that

the group K = G/Cp has generators as tabulated in Table 3. In particular, this

is dependent only upon the group K and does not depend upon X . In the table,

ζ denotes a primitive n-th root of unity, ω a primitive fifth root of unity, i is
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the usual notation for a primitive fourth root of unity and we have 1 ≤ j ≤ n,

1 ≤ l ≤ 4, 1 ≤ r, q ≤ 5

Proof: Most of this is a direct consequence of Theorem A.1. For the represen-

tations, see Section 1.2 of [11]. The orbits are found by finding the fixed points

of each automorphism and their orbits under the action of K.

G Generators Orbits of Lengths < |K|
Cn z → ζjz, 1 ≤ i ≤ n {0}, {∞}
Dn z → ζiz {0,∞},

ζi 1
z {ζ, ζ2, ζ3, . . . , ζn},

{ζ3/2, ζ5/2, ζ7/2, . . . , ζ(2n−1)/2}
A4 z → ±z,± 1

z ,±i z+1
z−1 {0,∞,−1, 1, i,−i}

±i z−1
z+1 ,± z+i

z−i ,± z−i
z+i {± (i+1)±

√
6i

2 }, {± (1−i)±
√

6i
2 }

S4 z → ilz, il

z , il z+1
z−1 {0,∞,−1, 1, i,−i}, {± (1±i)±

√
6i

2 }
±il z−1

z+1 ,±il z+i
z−i ,±il z−i

z+i {±(1 ±
√

2),±i(1 ±
√

2),±
√

2
2 (1 ± i)}

A5 z → ωrz,− 1
ωrz

ωr −(ω−ω4)ωqz+(ω2−ω3)
(ω2−ω3)ωqz+(ω−ω4)

ωr −(ω2−ω3)ωqz+(ω−ω4)
(ω−ω4)ωqz−(ω2−ω3)

Table 3. Standard action for K.

In light of the previous result, by identifying X/Cp with Σ in an appropriate

way, we may assume that the group K = G/Cp acts as tabulated in Table 3. We

shall call this action the standard action of K on Σ. It is natural to ask how

many different identifications of X/Cp with Σ there are with the property that

K acts standardly. This is important as the number of different identifications

will be an upper bound for the number of different polynomials for X our

method will produce up to a power coprime to p. The following result which

summarizes our discussion specifies precisely the number of different choices we

get after fixing this action.

K NPSL(2,C) (K) K NPSL(2,C) (K) K NPSL(2,C) (K)

Cn D∞ V4 S4 Dn(n 6= 2) D2n

A4 S4 S4 S4 A5 A5

Table 4. Normalizers of finite groups of automorphisms of Σ.
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Corollary A.3: If X is a cyclic p-gonal surface with normal p-gonal overgroup

G and p-gonal group Cp, there exists a biholomorphic map Φ: X/Cp → Σ such

that the group of biholomorphic maps K = Φ(G/Cp)Φ
−1 on Σ acts standardly.

This map is unique up to composition with an element in NPSL(2,C) (K). In

particular, if K is specified to act standardly on X , our method of construction

will produce up to |NPSL(2,C) (K)| different defining equations for X where the

polynomial q(x) is unique up to a power coprime to p. The groups NPSL(2,C) (K)

are tabulated in Table 4 where D∞ = {z → λz, z → 1/z|λ ∈ C }.
Appendix B. p-gonal normal overgroups

N/Cp Notation Presentation Ker(A)

Cn Cp × Cn 〈x, y|xp, yn, [x, y]〉 Cn

Cn Cpn 〈x|xpn〉 Cn

Cn Cp o Cn 〈x, y|xp, yn, xy = xa〉 Ck

Dn Cp × Dn

〈

x, y, z, w

∣
∣
∣
∣

x2, y2, zn, xyz, wp,
wxw−1, wyw−1, wzw−1

〉

Dn

Dn Dnp 〈x, y, z|x2, y2, znp, xyz〉 Cn

Dn QDnp

〈

x, y, z, w

∣
∣
∣
∣

x2, y2, zn, xyz, wp,
wxw, wyw, wzw−1

〉

Cn

Dn Cp oDn

〈

x, y, z, w

∣
∣
∣
∣

x2, y2, zn, wp, xyz,
wxw−1, wyw, wzw

〉

Dn/2

A4 Cp × A4

〈

x, y, z, w

∣
∣
∣
∣

x2, y3, z3, wp, xyz,
wx, wy, wz

〉

A4

A4 Cp oA4

〈

x, y, z, w

∣
∣
∣
∣

x2, y3, z3, wp, xyz,
wx, wywc, wzw−c

〉

V4

A4 V4 o C9

〈

x, y, z

∣
∣
∣
∣

x2, y2, z9,
xyx, xzy, yzxy

〉

A4

S4 Cp × S4

〈

x, y, z, w

∣
∣
∣
∣

x2, y3, z4, wp, xyz,
wxw−1, wyw−1, wzw−1

〉

S4

S4 Cp o S4

〈

x, y, z, w

∣
∣
∣
∣

x2, y3, z4, wp, xyz,
wxw, wyw−1, wzw

〉

A4

S4 (V4 o C9)o C2

〈

x, y, z, w

∣
∣
∣
∣

x2, y2, z9, w2, yxy,
xzy, yzxy, xwy, ywx, zwz−8

〉

A4

A5 Cp × A5

〈

x, y, z, w

∣
∣
∣
∣

x2, y3, z5, wp, xyz,
wxw−1, wyw−1, wzw−1

〉

A5

Table 5. p-gonal normal overgroups.

The following summarizes the notation used in Table 5:
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(i) k is the smallest positive integer dividing (p − 1) such that a(k − 1)

≡ 0 mod(p).

(ii) For two group elements g and h, gh denotes conjugation of g by h.

(iii) V4 denotes Klein’s group of order 4.

(iv) c is an integer with c3 ≡ 1 mod(p) (provided such an integer exists).
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